6. Hamiltonian Simulation
(LCU): pt.2
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Summary

In the Trotter-based Hamiltonian simulation, there is an inevitable O(poly(e ™))
scaling in the precision € .

Using the LCU approach, one can get a sub-logarithmic scaling in 1/¢. [Berry, Childs,
Cleve, Kohtari, and Somma (2013, 2014)]

Using SELECT + PREPARE, we can apply the desired unitary with a nonzero
probability.

However, we haven’t discussed how to boost this probability. We'll talk about that in
this lecture.



Amplitude ampilification

* One potential issue here is that the success probability is low. If we apply the same
operation many times, with high probability we will fail.

* Fortunately, there is a well-known way to amplify the amplitude, aka amplitude
amplification. [Brassard, Hoyer, Mosca, and Tapp (2000)]



Basic Setup
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Quiz

. Can we prepare |y) exactly?

If @ = for an integer n, the answer is obviously yes. But what about general 6?
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Oblivious Amplitude amplification

* Unfortunately, amplitude amplification is not exactly what we want.

* In amplitude amplification, # we can prepare a specific state we want. But what we
actually want is to apply a specific unitary to an arbitrary state.



Oblivious Amplitude amplification: Setup
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Oblivious Amplitude Amplification

LetS = — URU'R, where R =2|0){(0| — I.Then we have
S“U|0) |y) = sin(2Z + 1)O) | 0)V |y) + cos(2Z + 1)) [ 1) | ¢).
[Berry, Childs, Cleve, Kothari, and Somma (2014)]
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LCU: Putting everything together
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* Gate cost analysis ¢ Enw

* Simulation time: (Almost) linear

* Precision: (Almost) logarithmic

* To get a reasonable gate cost estimate, one can simply multiply the cost of
implementing SELECT/PREPARE subroutines.



Cost of SELECT

* Naive approach: O(N log N)
* A smarter approach: O(N)
* State-of-the-art: Low, Kliuchnikov, Schaeffer (2018)

* Sub-linear scaling in N possible (for T-gates), provided that you’re willing to use
more qubits.

* Optimal



Cost of PREPARE

* Naive approach: O(N log(N/¢€)) [Shende, Bullock, and Markov (2006)]
* Better data structure: O(N + log(1/¢)) [Babbush et al. (2018)]
* State-of-the-art: Low, Kliuchnikov, Schaeffer (2018)

* Sub-linear scaling in N possible (for T-gates), provided that you’re willing to use
more qubits.



Playing with non-unitary operators

* Itis possible to apply a linear combination of unitary, even if it results in a non-
unitary operator. (LCU)

* Even if you can apply a unitary operator probabilistically, you can boost the success
probability to 1, making the operation deterministic. (Oblivious amplitude
amplification)

* A natural question: Can we apply a non-unitary operator and boost the success
pr\obability?
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